Skip to main content
Log in

Failure Behavior of Cemented Tungsten Carbide Materials: A Case Study of Mining Drill Bits

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present work is mainly focused on the macroscopic and microscopic examination of failed tungsten carbide (WC-Co) drill bits to find the root cause of the insert’s failure. Different failed WC-Co tool bits have been observed macroscopically and found that the inserts have failed due to shear-off, cracks, and gradual wear. The FE-SEM and AFM micrographs have been used to understand the different degradation and the tribocorrosion mechanisms of WC-Co inserts. Typical shape change mechanisms of individual WC grains have also been studied in detail with the help of FE-SEM micrographs, which have been influenced by the tribocorrosion in the presence of the mining environment. Ultrasonic cleaning method has been used to clean the inserts for the microscopic examinations. Various morphologies of fragmented WC grains have been examined to understand the shape change mechanisms of WC grains. The different electrode potential between the Co binder and the WC grains is the primary cause of the micro-galvanic form of corrosion. Hence, in the present study the wear and corrosion mechanisms of WC-Co insert along with the possible approaches to reduce the tribocorrosion have been discussed in detail. It was found that the proper understanding of tribocorrosion mechanisms is essential for the selection, development, and advancement of the suitable WC-Co tool materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

modified by the addition of additives such as multi-carbides (VC).

Similar content being viewed by others

References

  1. E. Lassner, W.-D. Schubert, E. Lassner, W.-D. Schubert, Tungsten in Hardmetals, In Tungsten, Springer, Boston, MA, (1999), p 321–363.

  2. P.K. Katiyar, A Comprehensive Review on Synergy Effect Between Corrosion and Wear of Cemented Tungsten Carbide Tool Bits: A Mechanistic Approach, Int. J. Refract. Met. Hard Mater., 2020, 92, p 105315.

    Article  CAS  Google Scholar 

  3. G. Singh, A Survey of Corrosivity of Underground Mine Waters From Indian Coal Mines, Int. J. Mine Water., 1986, 5, p 21–32.

    Article  CAS  Google Scholar 

  4. M. Antonov, R. Veinthal, D.L. Yung, D. Katušin and I. Hussainova, Mapping of Impact-Abrasive Wear Performance of WC-Co Cemented Carbides, Wear, 2015, 332–333, p 971–978.

    Article  CAS  Google Scholar 

  5. J. García, V. Collado Ciprés, A. Blomqvist, B. Kaplan, Cemented Carbide Microstructures: A Review, Int. J. Refract. Met. Hard Mater., 2019, 80, p 40–68.

    Article  CAS  Google Scholar 

  6. S. Sutthiruangwong, G. Mori and R. Kösters, Passivity and Pseudopassivity of Cemented Carbides, Int. J. Refract. Met. Hard Mater., 2005, 23, p 129–136.

    Article  CAS  Google Scholar 

  7. G. Li, Y. Peng, L. Yan, T. Xu, J. Long and F. Luo, Effects of Cr Concentration on the Microstructure and Properties of WC-Ni Cemented Carbides, J. Mater. Res. Technol., 2020, 9, p 902–907.

    Article  CAS  Google Scholar 

  8. A.G.P. Da Silva, C.P. De Souza, U.U. Gomes, F.F.P. Medeiros, C. Ciaravino and M. Roubin, Low Temperature Synthesized NbC as Grain Growth Inhibitor for WC-Co Composites, Mater. Sci. Eng. A., 2000, 293, p 242–246. https://doi.org/10.1016/S0921-5093(00)00993-X

    Article  Google Scholar 

  9. D.S. Konadu, J. van der Merwe, J.H. Potgieter, S. Potgieter-Vermaak and C.N. Machio, The Corrosion Behaviour of WC-VC-Co Hardmetals in Acidic Media, Corros. Sci., 2010, 52, p 3118–3125.

    Article  CAS  Google Scholar 

  10. I. Sugiyama, Y. Mizumukai, T. Taniuchi, K. Okada, F. Shirase, T. Tanase et al., Formation of (W, V)Cx Layers at the WC/Co Interfaces in the VC-Doped WC-Co Cemented Carbide, Int. J. Refract. Met. Hard Mater., 2012, 30, p 185–187.

    Article  CAS  Google Scholar 

  11. C.N. Machio, D.S. Konadu, J.H. Potgieter, S. Potgieter-Vermaak, J. Van der Merwe, Corrosion of WC-VC-Co Hardmetal in Neutral Chloride Containing Media, ISRN Corros., (2013) 1–10

  12. J. Weidow and H.O. Andrén, Grain and Phase Boundary Segregation in WC-Co with TiC, ZrC, NbC or TaC Additions, Int. J. Refract. Met. Hard Mater., 2011, 29, p 38–43.

    Article  CAS  Google Scholar 

  13. S.H. Hayashi K, Fuke Y, , Effects of Addition Carbides on the Grain Size of WC– Co Alloy, J Jpn Soc. Powder Met., 1972, 19, p 67–71.

    Article  Google Scholar 

  14. X. Ren, H. Miao and Z. Peng, A Review of Cemented Carbides for Rock Drilling: An Old But Still Tough Challenge in Geo-Engineering, Int. J. Refract. Met. Hard Mater., 2013, 39, p 61–77.

    Article  CAS  Google Scholar 

  15. J. Kümmel, K. Poser, F. Zanger, J. Michna, V. Schulze, Surface Layer States of Worn Uncoated and TiN-Coated WC/Co-Cemented Carbide Cutting Tools After Dry Plain Turning of Carbon Steel, Adv. Tribol., 2013, 2013, p 519686.

    Google Scholar 

  16. W.D. Schubert, E. Lassner, W. Bohlke, Cemented carbides-a success story, Tungsten, International Tungsten Industry Association, (2010), p 1–12

  17. J. Larsen-Basse, Wear of Hard-Metals in Rock Drilling: A Survey of the Literature, Powder Metall., 1973, 16, p 1–32.

    Article  CAS  Google Scholar 

  18. X. Yang, X. Li and Y. Lu, Wear Characteristics of the Cemented Carbide Blades in Drilling Limestone With Water Jet, Int. J. Refract. Met. Hard Mater., 2011, 29, p 320–325.

    Article  CAS  Google Scholar 

  19. A. C. A. de Melo, J. C. G. Milan, M. B. da Silva, Á. R. Machado, Some observations on wear and damages in cemented carbide tools, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2006, 28, p 269–277.

  20. I. Konyashin, B. Ries, S. Hlawatschek and A. Mazilkin, Novel Industrial Hardmetals for Mining, Construction and Wear Applications, Int. J. Refract. Met. Hard Mater., 2018, 71, p 357–365.

    Article  CAS  Google Scholar 

  21. J. Sun, J. Zhao, F. Gong, X. Ni and Z. Li, Development and Application of WC-Based Alloys Bonded with Alternative Binder Phase, Crit. Rev. Solid State Mater. Sci., 2019, 44, p 211–238.

    Article  CAS  Google Scholar 

  22. A.K. Kasar, A. Siddaiah, R. Ramachandran and P.L. Menezes, Tribocorrosion Performance of Tool Steel for Rock Drilling Process, J. Bio- Tribo-Corrosion., 2019, 5, p 1–8.

    Article  Google Scholar 

  23. E. Holmström, R. Lizárraga, D. Linder, A. Salmasi, W. Wang, B. Kaplan et al., High Entropy Alloys: Substituting for Cobalt in Cutting Edge Technology, Appl. Mater. Today., 2018, 12, p 322–329.

    Article  Google Scholar 

  24. D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater., 2017, 122, p 448–511.

    Article  CAS  Google Scholar 

  25. W.J. Tomlinson and N.J. Ayerst, Anodic Polarization and Corrosion of WC-Co Hardmetals Containing Small Amounts of Cr3C2 and/or VC, J. Mater. Sci., 1989, 24, p 2348–2352.

    Article  CAS  Google Scholar 

  26. A.K. Kasar, A. Siddaiah, R. Ramachandran and P.L. Menezes, Tribocorrosion Performance of Tool Steel for Rock Drilling Process, J. Bio-Tribo-Corrosion., 2019, 5, p 36–43.

    Article  Google Scholar 

  27. G.N. Mekgwe, W.R. Tuckart, O.J. Akinribide, T. Langa, B.A. Obadele, P.A. Olubambi, Effect of CrC-Ni on the tribological behaviour of WC cemented carbide., IOP Conf. Ser. Mater. Sci. Eng., 499, 4th International Conference on Structural NanoComposites, Berlin, Germany, 2019

  28. M. Habibi Rad, M. Ahmadian and M.A. Golozar, Investigation of the Corrosion Behavior of WC-FeAl-B Composites in Aqueous Media, Int. J. Refract. Met. Hard Mater, 2012, 35, p 62–69.

    Article  CAS  Google Scholar 

  29. R.J.K. Wood, S. Herd and M.R. Thakare, A Critical Review of the Tribocorrosion of Cemented and Thermal Sprayed Tungsten Carbide, Tribol. Int., 2018, 119, p 491–509.

    Article  CAS  Google Scholar 

  30. F.J.J. Kellner, H. Hildebrand and S. Virtanen, Effect of WC Grain Size on the Corrosion Behavior of WC-Co Based Hardmetals in Alkaline Solutions, Int. J. Refract. Met. Hard Mater., 2009, 27, p 806–812.

    Article  CAS  Google Scholar 

  31. A.M. Human, B. Roebuck and H.E. Exner, Electrochemical Polarisation and Corrosion Behaviour of Cobalt and Co(W, C) Alloys in 1 N Sulphuric Acid, Mater. Sci. Eng. A., 1998, 241, p 202–210.

    Article  Google Scholar 

  32. P.K. Katiyar, P.K. Singh, R. Singh and A.L. Kumar, Modes of Failure of Cemented Tungsten Carbide Tool Bits (WC/Co): A Study of Wear Parts, Int. J. Refract. Met. Hard Mater., 2016, 54, p 27–38.

    Article  CAS  Google Scholar 

  33. VV Timonin; AS Smolentsev; I O Shakhtorin; NI Polushin; AI Laptev; AS Kushkhabiev, , Causes of Wear of PDC Bits and Ways of Improving Their Wear Resistance, IOP Publishing, IOP Conf. Ser. Earth Environ. Sci., 2017, p 53

    Google Scholar 

  34. Y.F. Zheng, G. Fargas, O. Lavigne, E. Roitero and L. Llanes, Corrosion-Induced Changes on Hertzian Contact Damage in Cemented Carbides, Int. J. Refract. Met. Hard Mater., 2020, 92, p 105334.

    Article  CAS  Google Scholar 

  35. Z.Z. Fang, M.C. Koopman and H. Wang, Cemented Tungsten Carbide Hardmetal-An Introduction, Comprehensive Hard Mater., 2014 1, p 123–137 (2014)

    Article  CAS  Google Scholar 

  36. P.K. Katiyar and N.S. Randhawa, Corrosion Behavior of WC-Co Tool Bits in Simulated (Concrete, Soil, and Mine) Solutions with and Without Chloride Additions, Int. J. Refract. Met. Hard Mater, 2019, 85, p 105062.

    Article  CAS  Google Scholar 

  37. U. Beste, T. Hartzell, H. Engqvist and N. Axén, Surface Damage on Cemented Carbide Rock-Drill Buttons, Wear, 2001, 249, p 324–329.

    Article  CAS  Google Scholar 

  38. U. Beste and S. Jacobson, Friction Between a Cemented Carbide Rock Drill Button and Different Rock Types, Wear, 2002, 253, p 1219–1221.

    Article  CAS  Google Scholar 

  39. U. Beste, S. Jacobson and S. Hogmark, Rock Penetration into Cemented Carbide Drill Buttons During Rock Drilling, Wear, 2008, 264, p 1142–1151.

    Article  CAS  Google Scholar 

  40. U. Beste and S. Jacobson, A New View of the Deterioration and Wear of WC/Co Cemented Carbide Rock Drill Buttons, Wear, 2008, 264, p 1129–1141.

    Article  CAS  Google Scholar 

  41. U. Beste, E. Coronel and S. Jacobson, Wear Induced Material Modifications of Cemented Carbide Rock Drill Buttons, Int. J. Refract. Met. Hard Mater., 2006, 24, p 168–176.

    Article  CAS  Google Scholar 

  42. R.K. Abbas, A Review on the Wear of Oil Drill Bits (Conventional and the State of the Art Approaches for Wear Reduction and Quantification), Eng. Fail. Anal., 2018, 90, p 554–584.

    Article  Google Scholar 

  43. S. Hwang and H. Jang, Effects of Overused Top-hammer Drilling Bits, Insights Min. Sci. Technol. Buttons., 2019, 1, p 37–43.

    Google Scholar 

  44. S. Nahak, S. Dewangan, S. Chattopadhyaya, G. Krolczyk and S. Hloch, Discussion on Importance of Tungsten Carbide - Cobalt (Wc-Co) Cemented Carbide and its Critical Characterization for Wear Mechanisms Based on Mining Applications, Arch. Min. Sci., 2018, 63, p 229–246.

    CAS  Google Scholar 

  45. W.H. Gu, Y.S. Jeong, K. Kim, J.C. Kim, S.H. Son and S. Kim, Thermal Oxidation Behavior of WC-Co Hard Metal Machining Tool Tip Scraps, J. Mater. Process. Technol., 2012, 212, p 1250–1256.

    Article  CAS  Google Scholar 

  46. J.E. Cho, S.Y. Hwang and K.Y. Kim, Corrosion Behavior of Thermal Sprayed WC Cermet Coatings Having Various Metallic Binders in Strong Acidic Environment, Surf. Coat. Technol., 2006, 200, p 2653–2662.

    Article  CAS  Google Scholar 

  47. S. Olovsjö, R. Johanson, F. Falsafi, U. Bexell and M. Olsson, Surface Failure and Wear of Cemented Carbide Rock Drill Buttons-The Importance of Sample Preparation and Optimized Microscopy Settings, Wear, 2013, 302, p 1546–1554.

    Article  CAS  Google Scholar 

  48. K.T. Kembaiyan and K. Keshavan, Combating Severe Fluid Erosion and Corrosion of Drill Bits Using Thermal Spray Coatings, Wear, 1995, 186–187, p 487–492.

    Article  Google Scholar 

  49. M. Groppe, Capacity Planning, Sandvik Hard Mater., Annual Report, (2014)

  50. S. Ndlovu, K. Durst and G. Mathias, Investigation of the Sliding Contact Properties of WC-Co Hard Metals Using Nanoscratch Testing, Wear, 2007, 263, p 1602–1609.

    Article  CAS  Google Scholar 

  51. K.J. Swick, G.W. Stachowiak and A.W. Batchelor, Mechanism of Wear of Rotary-Percussive Drilling Bits and the Effect Of Rock Type on Wear, Tribol. Int., 1992, 25, p 83–88.

    Article  Google Scholar 

  52. J. Larsen-Base, C.M. Perrot and P.M. Robinson, Abrasive Wear of Tungsten Carbide-Cobalt Composites. I. Rotary Drilling Tests, Mater. Sci. Eng., 1974, 13, p 93–100.

    Article  Google Scholar 

  53. Y.S. Zhongjian Zhang, Xu. Tao, W. Peng, D. Chen and Y. Jiang, The Influence of pH on Thermal Fatigue Crack Propagation Behavior, Int. J. Refract. Met. Hard Mater., 2013, 40, p 14–18.

    Article  CAS  Google Scholar 

  54. S. Ishihara, H. Shibata, T. Goshima and A.J. McEvily, Thermal Shock Induced Microcracking of Cermets and Cemented Carbides, Scr. Mater., 2005, 52, p 559–563.

    Article  CAS  Google Scholar 

  55. A.J. Gant, M.G. Gee and A.T. May, The Evaluation of tribo-Corrosion Synergy for WC-Co Hardmetals in Low Stress Abrasion, Wear, 2004, 256, p 500–516.

    Article  CAS  Google Scholar 

  56. S. Nahak, S. Dewangan and S. Chattopadhyaya, Discussion on Wear Phenomenain Cemented Carbide, Procedia Earth Planet. Sci., 2015, 11, p 284–293.

    Article  CAS  Google Scholar 

  57. K. Jia and T.E. Fischer, Abrasion Resistance of Nanostructured and Conventional Cemented Carbides, Wear, 1996, 200, p 206–214.

    Article  CAS  Google Scholar 

  58. D.G.F. O’Quigley, S. Luyckx and M.N. James, An empirical Ranking of a Wide Range of WC-Co Grades in Terms of Their Abrasion Resistance Measured by the ASTM Standard B 611–85 test, Int. J. Refract. Met. Hard Mater., 1997, 15, p 73–79.

    Article  Google Scholar 

  59. K.P. Mingard, H.G. Jones, M.G. Gee, B. Roebuck and J.W. Nunn, In Situ Observation of Crack Growth in a WC-Co Hardmetal and Characterisation of Crack Growth Morphologies by EBSD, Int. J. Refract. Met. Hard Mater., 2013, 36, p 136–142.

    Article  CAS  Google Scholar 

  60. S. Ndlovu, K. Durst and M. Göken, Investigation of the Sliding Contact Properties of WC-Co Hard Metals Using Nanoscratch Testing, Wear, 2007, 263, p 1602–1609.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Department of Materials Science and Engineering, NIT Hamirpur for extending the characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prvan Kumar Katiyar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katiyar, P.K., Maurya, R. & Singh, P.K. Failure Behavior of Cemented Tungsten Carbide Materials: A Case Study of Mining Drill Bits. J. of Materi Eng and Perform 30, 6090–6106 (2021). https://doi.org/10.1007/s11665-021-05829-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05829-7

Keywords

Navigation